PHYSICS QUOTES

Politics is more difficult than physics

PHYSICS QUOTES

Niels Bohr said about quantum mechanics

PHYSICS QUOTES

James Jeans says about physics

PHYSICS QUOTES

Wow... Lord Kelvin is so physicsholic :D

PHYSICS QUOTES

Friedrich D says about physics

Jumat, 20 Desember 2013

Listrik Dinamis (di postingan ini ada animasi gif pertama buatanku loh, hehee)

Listrik Dinamis adalah listrik yang dapat bergerak. 

berikut animasinya:

ini animasi gif pertama buatanku. heheheee
lihatlah, saat saklarnya terbuka, tidak ada arus listrik yang mengalir. namun pada saat saklar ditutup, terjadi aliran arus dari kutub positif menuju kutub negatif baterai, dan lampunya dapat menyala. :D. Dengan demikian, arus listrik dapat mengalir pada rangkaian yang  tertutup.

cara mengukur kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung pada hambatan, tetapi pada rangkaian bercabang tegangan tidak berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum kirchoff yang berbunyi "jumlah kuat arus listrik yang masuk sama dengan jumlah kuat arus listrik yang keluar". berdasarkan hukum ohm dapat disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan. Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A) serta hambatan adalah ohm.

HUKUM OHM

Aliran arus listrik dalam suatu rangkaian tidak berakhir pada alat listrik. tetapi melingkar kernbali ke sumber arus. Pada dasarnya alat listrik bersifat menghambat alus listrik. Hubungan antara arus listrik, tegangan, dan hambatan dapat diibaratkan seperti air yang mengalir pada suatu saluran. Orang yang pertama kali meneliti hubungan antara arus listrik, tegangan. dan hambatan adalah 
Georg Simon Ohm (1787-1854) seorang ahli fisika Jerman. Hubungan tersebut lebih dikenal dengan sebutan hukum Ohm.
Setiap arus yang mengalir melalui suatu penghantar selalu mengalami hambatan. Jika hambatan listrik dilambangkan dengan R. beda potensial V, dan kuat arus I, hubungan antara R, V, dan I secara matematis dapat ditulis:


Sebuah penghantar dikatakan mempunyai nilai hambatan 1 Ω jika tegangan 1 V di antara kedua ujungnya mampu mengalirkan arus listrik sebesar 1 A melalui konduktor itu. Data-data percobaan hukum Ohm dapat ditampilkan dalam bentuk grafik seperti gambar di samping. Pada pelajaran Matematika telah diketahui bahwa kemiringan garis merupakan hasil bagi nilai-nilai pada sumbu vertikal (ordinat) oleh nilai-nilai yang bersesuaian pada sumbu horizontal (absis). Berdasarkan grafik, kemiringan garis adalah α = V/T Kemiringan ini tidak lain adalah nilai hambatan (R). Makin besar kemiringan berarti hambatan (R) makin besar. Artinya, jika ada suatu bahan dengan kemiringan grafik besar. bahan tersebut makin sulit dilewati arus listrik. Komponen yang khusus dibuat untuk menghambat arus listrik disebut resistor (pengharnbat). Sebuah resistor dapat dibuat agar mempunyai nilai hambatan tertentu. Jika dipasang pada rangkaian sederhana, resistor berfungsi untuk mengurangi kuat arus. Namun, jika dipasang pada rangkaian yang rumit, seperti radio, televisi, dan komputer, resistor dapat berfungsi sebagai pengatur kuat arus. Dengan demikian, komponen-komponen dalam rangkaian itu dapat berfungsi dengan baik. Resistor sederhana dapat dibuat dari bahan nikrom (campuran antara nikel, besi. krom, dan karbon). Selain itu, resistor juga dapat dibuat dari bahan karbon. Nilai hambatan suatu resistor dapat diukur secara langsung dengan ohmmeter. Biasanya, ohmmeter dipasang hersama-sama dengan amperemeter dan voltmeter dalam satu perangkat yang disebut multimeter. Selain dengan ohmmeter, nilai hambatan resistor dapat diukur secara tidak langsung dengan metode amperemeter voltmeter.

HAMBATAN KAWAT PENGHANTAR
besar hambatan suatu kawat penghantar 1. Sebanding dengan panjang kawat penghantar. artinya makin panjang penghantar, makin besar hambatannya, 2. Bergantung pada jenis bahan kawat (sebanding dengan hambatan jenis kawat), dan 3. berbanding terbalik dengan luas penampang kawat, artinya makin kecil luas penampang, makin besar hambatannya. Jika panjang kawat dilambangkan ℓ, hambatan jenis ρ, dan luas penampang kawat A. Secara matematis, besar hambatan kawat dapat ditulis :


Nilai hambatan suatu penghantar tidak bergantung pada beda potensialnya. Beda potensial hanya dapat mengubah kuat arus yang melalui penghantar itu. Jika penghantar yang dilalui sangat panjang, kuat arusnya akan berkurang. Hal itu terjadi karena diperlukan energi yang sangat besar untuk mengalirkan arus listrik pada penghantar panjang. Keadaan seperti itu dikatakan tegangan listrik turun. Makin panjang penghantar, makin besar pula penurunan tegangan listrik.


HUKUM KIRCHOFF
Arus listrik yang melalui suatu penghantar dapat kita pandang sebagai aliran air sungai. Jika sungai tidak bercabang, jumlah air di setiap tempat pada sungai tersebut sama. Demikian halnya dengan arus listrik.


Jumlah kuat arus yang masuk ke suatu titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan tersebut. Pernyataan itu sering dikenal sebagai hukum I Kirchhoff karena dikemukakan pertama kali oleh Kirchhoff.
Maka diperoleh persamaan :
I1 + I2 = I3 + I4 + I5
masuk = I keluar

RANGKAIAN HAMBATAN

  • Rangkaian Seri
Berdasarkan hukum Ohm: V = IR, pada hambatan R1 terdapat teganganV1 =IR1 dan pada hambatan R2 terdapat tegangan V= IR 2. Karena arus listrik mengalir melalui hambatan R1 dan hambatan R2,tegangan totalnya adalah VAC = IR1 + IR2.
Mengingat VAC merupakan tegangan total dan kuat arus listrik yang mengalir pada rangkaian seperti di atas (rangkaian tak bercabang) di setiap titik sama maka
VAC = IR1 + IR2
I R1 = I(R1 + R2)
R1 = R1 + R2 ; R= hambatan total
Rangkaian seperti di atas disebut rangkaian seri. Selanjutnya, R1 ditulis Rs (R seri) sehingga Rs = R1 + R2 +...+Rn, dengan n = jumlah resistor. Jadi, jika beberapa buah hambatan dirangkai secara seri, nilai hambatannya bertambah besar. Akibatnya, kuat arus yang mengalir makin kecil. Hal inilah yang menyebabkan nyala lampu menjadi kurang terang (agak redup) jika dirangkai secara seri. Makin banyak lampu yang dirangkai secara seri, nyalanya makin redup. Jika satu lampu mati (putus), lampu yang lain padam.

  • Rangakaian Paralel
Mengingat hukum Ohm: I = V/R dan I = I1+ I2, maka

AB =V1 = V2 = V. Dengan demikian, diperoleh persamaan

Rangkaian yang menghasilkan persamaan seperti di atas disebut rangkaian paralel. Oleh karena itu, selanjutnya Rt ditulis Rp (Rp = R paralel). Dengan demikian, diperoleh persamaan 

Berdasarkan persamaan di atas, dapat disimpulkan bahwa dalam rangkaian paralel, nilai hambatan total (Rp) lebih kecil dari pada nilai masing-masing hambatan penyusunnya (R1 dan R2). Oleh karena itu, beberapa lampu yang disusun secara paralel sama terangnya dengan lampu pada intensitas normal (tidak mengalami penurunan). Jika salah satu lampu mati (putus), lampu yang lain tetap menyala.

Referensi

KALOR

Pengertian Kalor
Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda tersebut. Jika suhunya tinggi maka kalor yang dikandung oleh benda sangat besar, begitu juga sebaliknya jika suhunya rendah maka kalor yang dikandung sedikit.
Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan suatu benda(zat) bergantung pada 3 faktor
  1. massa zat
  2. jenis zat (kalor jenis)
  3. perubahan suhu
Sehingga secara matematis dapat dirumuskan :
Q = m.c.(t2 – t1)
Dimana :
Q adalah kalor yang dibutuhkan (J)
m adalah massa benda (kg)
c adalah kalor jenis (J/kgC)
(t2-t1) adalah perubahan suhu (C)
Kalor dapat dibagi menjadi 2 jenis
  • Kalor yang digunakan untuk menaikkan suhu
  • Kalor yang digunakan untuk mengubah wujud (kalor laten), persamaan yang digunakan dalam kalor laten ada dua macam Q = m.U dan Q = m.L. Dengan U adalah kalor uap (J/kg) dan L adalah kalor lebur (J/kg)
Dalam pembahasan kalor ada dua kosep yang hampir sama tetapi berbeda yaitu kapasitas kalor (H) dan kalor jenis (c)
Kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu benda sebesar 1 derajat celcius.
H = Q/(t2-t1)
Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu 1 kg zat sebesar 1 derajat celcius. Alat yang digunakan untuk menentukan besar kalor jenis adalah kalorimeter.
c = Q/m.(t2-t1)
Bila kedua persamaan tersebut dihubungkan maka terbentuk persamaan baru
H = m.c
Hubungan antara kalor dengan energi listrik
Kalor merupakan bentuk energi maka dapat berubah dari satu bentuk kebentuk yang lain. Berdasarkan Hukum Kekekalan Energi maka energi listrik dapat berubah menjadi energi kalor dan juga sebaliknya energi kalor dapat berubah menjadi energi listrik. Dalam pembahasan ini hanya akan diulas tentang hubungan energi listrik dengan energi kalor. Alat yang digunakan mengubah energi listrik menjadi energi kalor adalah ketel listrik, pemanas listrik, dll.
Besarnya energi listrik yang diubah atau diserap sama dengan besar kalor yang dihasilkan. Sehingga secara matematis dapat dirumuskan.
W = Q
Untuk menghitung energi listrik digunakan persamaan sebagai berikut :
W = P.t
Keterangan :
W adalah energi listrik (J)
P adalah daya listrik (W)
t adalah waktu yang diperlukan (s)
Bila rumus kalor yang digunakan adalah Q = m.c.(t2 – t1) maka diperoleh persamaan ;
P.t = m.c.(t2 – t1)
Yang perlu diperhatikan adalah rumus Q disini dapat berubah-ubah sesuai dengan soal.
Asas Black
Menurut asas Black apabila ada dua benda yang suhunya berbeda kemudian disatukan atau dicampur maka akan terjadi aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran ini akan berhenti sampai terjadi keseimbangan termal (suhu kedua benda sama). Secara matematis dapat dirumuskan :
Q lepas = Q terima
Yang melepas kalor adalah benda yang suhunya tinggi dan yang menerima kalor adalah benda yang bersuhu rendah. Bila persamaan tersebut dijabarkan maka akan diperoleh :
Q lepas = Q terima
m1.c1.(t1 – ta) = m2.c2.(ta-t2)
Catatan yang harus selalu diingat jika menggunakan asasa Black adalah pada benda yang bersuhu tinggi digunakan (t1 – ta) dan untuk benda yang bersuhu rendah digunakan (ta-t2). Dan rumus kalor yang digunakan tidak selalu yang ada diatas bergantung pada soal yang dikerjakan.

Sumber tulisan: klik

Pesawat Sederhana

Pesawat sederhana adalah alat sederhana yang dipergunakan untuk mempermudah manusia melakukan usaha.

Pesawat sederhana berdasarkan prinsip kerjanya dibedakan menjadi : tuas/pengungkit, bidang miring, katrol dan roda berporos/roda bergandar. Pesawat sederhana mempunyai keuntungan mekanik yang didapatkan dari perbandingan antara gaya beban dengan gaya kuasa sehingga memperingan kerja manusia. Untuk lebih jelasnya mari kita bahas satu per satu.

a. Tuas/Pengungkit

Tuas/pengungkit berfungsi untuk mengungkit, mencabut atau mengangkat benda yang berat. Bagian-bagian pengungkit:

A = titik kuasa

T = titik tumpu

B = titik beban

F = gaya kuasa (N)
w = gaya beban (N)
lk = lengan kuasa (m)
lb = lengan beban (m)

Jenis-jenis tuas:

1) Tuas Jenis pertama

Yaitu tuas dengan titik tumpu berada diantara titik beban dan titik kuasa.


Contoh : pemotong kuku, gunting, penjepit jemuran, tang

2) Tuas Jenis kedua
Yaitu tuas dengan titik beban berada diantara titik tumpu dan titik kuasa.


Contoh : gerobak beroda satu, alat pemotong kertas, dan alat pemecah kemiri, pembuka tutup botol.
3) Tuas Jenis ketiga
Yaitu tuas dengan titik kuasa berada diantara titik tumpu dan titik beban.


Contoh :sekop yang biasa digunakan untuk memindahkan pasir.
Keuntungan Mekanik Tuas
Keuntungan mekanik pada tuas adalah perbandingan antara gaya beban (w) dengan gaya kuasa (F), dapat dituliskan sebagai :
KM = w/F atau KM = lk/lb
Keuntungan mekanik pada tuas bergantung pada masing-masing lengan. Semakin panjang lengan kuasanya, maka keuntungan mekaniknya akan semakin besar.

b. Bidang Miring
Bidang miring merupakan salah satu jenis pesawat sederhana yang digunakan untuk memindahkan benda dengan lintasan yang miring.

Bagian-bagian bidang miring:

Prinsip Kerja Bidang Miring
Keuntungan mekanik bidang miring
Keuntungan mekanik bidang miring bergantung pada panjang landasan bidang miring dan tingginya. Semakin kecil sudut kemiringan bidang, semakin besar keuntungan mekanisnya atau semakin kecil gaya kuasa yang harus dilakukan.
Keuntungan mekanik bidang miring dirumuskan dengan perbandingan antara panjang (l) dan tinggi bidang miring (h).
KM = l/h

Pemanfaatan bidang miring dalam kehidupan sehari-hari terdapat pada tangga dan jalan di daerah pegunungan.
c. Katrol
Katrol merupakan roda yang berputar pada porosnya. Biasanya pada katrol juga terdapat tali atau rantai sebagai penghubungnya. Berdasarkan cara kerjanya, katrol merupakan jenis pengungkit karena memiliki titik tumpu, kuasa, dan beban. Katrol digolongkan menjadi tiga, yaitu katrol tetap, katrol bebas, dan katrol majemuk.

1) Katrol tetap 

Katrol tetap merupakan katrol yang posisinya tidak berpindah pada saat digunakan. Katrol jenis ini biasanya dipasang pada tempat tertentu.
Contoh : katrol yang digunakan pada tiang bendera dan sumur timba
Keuntungan mekanik 
Pada katrol tetap, panjang lengan kuasa sama dengan lengan beban sehingga keuntungan mekanik pada katrol tetap adalah 1, artinya besar gaya kuasa sama dengan gaya beban.

2) Katrol bebas
Berbeda dengan katrol tetap, pada katrol bebas kedudukan atau posisi katrol berubah dan tidak dipasang pada tempat tertentu. Katrol jenis ini biasanya ditempatkan di atas tali yang kedudukannya dapat berubah. Salah satu ujung tali diikat pada tempat tertentu. Jika ujung yang lainnya ditarik maka katrol akan bergerak. Katrol jenis ini bisa kita temukan pada alat-alat pengangkat peti kemas di pelabuhan.
Keuntungan mekanik
Pada katrol bebas, panjang lengan kuasa sama dengan dua kali panjang lengan beban sehingga keuntungan mekanik pada katrol tetap adalah 2, artinya besar gaya kuasa sama dengan setengah dari gaya beban.

3) Katrol majemuk /takal
Katrol majemuk merupakan perpaduan dari katrol tetap dan katrol bebas. Kedua katrol ini dihubungkan dengan tali. Pada katrol majemuk, beban dikaitkan pada katrol bebas. Salah satu ujung tali dikaitkan pada penampang katrol tetap. Jika ujung tali yang lainnya ditarik maka beban akan terangkat beserta bergeraknya katrol bebas ke atas.
Keuntungan mekanik
Keuntungan mekanik pada katrol majemuk adalah sejumlah tali yang digunakan untuk mengangkat beban.

d. Roda Berporos/roda bergandar

Roda berporos merupakan roda yang di dihubungkan dengan sebuah poros yang dapat berputar bersama-sama. Roda berporos merupakan salah satu jenis pesawat sederhana yang banyak ditemukan pada alat-alat seperti setir mobil, setir kapal, roda sepeda, roda kendaraan bermotor, dan gerinda.
sumber materi: dari sini

Fenomena Optik : fatamorgana

Fatamorgana merupakan sebuah fenomena di mana optik yang biasanya terjadi di tanah lapang yang luas seperti padang pasir atau padang es. Fatamorgana adalah pembiasan cahaya melalui kepadatan yang berbeda, sehingga bisa membuat sesuatu yang tidak ada menjadi seolah ada.
Fenomena ini biasa dijumpai di tempat panas dan Gunung Brocken di Jerman.
Seringkali di gurun pasir, fatamorgana menyerupai danau atau air atau kota. Ini sebenarnya adalah pantulan daripada langit yang dipantulkan udara panas. Udara panas ini berfungsi sebagai cermin.
Kata 'Fatamorgana' diambil dari bahasa Italia yang juga merupakan nama dari saudari Raja Arthur, yaitu Faye le Morgana, seorang peri yang bisa berubah-ubah rupa.
Dalam peristiwa fatamorgana terdapat suatu konsep Fisika yang kadang terlupakan yaitu konsep pembiasan.
Fatamorgana sering terjadi di gurun pasir, jalan-jalan beraspal, dan lautan. Dalam kajian fisika, prinsip terjadinya fatamorgana berawal dari proses pembiasan yang terjadi pada dua medium melalui lapisan-lapisan udara yag memiiki perbedaan suhu. 
Proses terjadinya fatamorgana berawal dari adanya perbedaan kerapatan antara udara dingin dan udara panas. Udara dingin memiliki kerapatan lebih pekat dan lebih berat dibandingkan udara panas.
Dalam kenyataannya, lapisan udara yang panas yang ada di dekat tanah terperangkap oleh lapisan udara yang lebih dingin di atasnya. Cahaya dibiaskan ke arah garis horisontal pandangan dan akhirnya berjalan ke atas karena pengaruh internal total.
Pemantulan internal total (total internal reflection) adalah proses pemantulan seberkas cahaya pada permukaan batas antara satu medium dengan medium yang lain yang indeks biasnya lebih kecil, jika sudut datang ke medium kedua melebihi suatu sudut kritis tertentu.
Dengan demikian, cahaya berjalan di dalam medium yang memiliki indeks bias yang tinggi seperti air, kaca, dan plastik ke medium yang memiliki indeks bias lebih rendah seperti udara. Akibatnya gambar dengan sifat semu dan terbalik akan membentuk fatamorgana.
Pada siang hari, sinar Matahari sangat terik sehingga membuat jalan beraspal yang hitam menjadi sangat panas. Aspal yang panas itu akan meradiasikan panas sehingga udara di sekitar jalan menjadi sangat panas. Udara panas tersebut akan memantulkan bayangan langit biru dan awan-awan seperti halnya kolam berisi air. Inilah fatamorgana. Hal yang sama juga terjadi di gurun pasir.
Sekarang pertanyaannya, kenapa udara panas dapat membentuk bayangan langit?
Jawabannya, karena ada proses pembiasan (pembelokan cahaya). Akibat panas aspal atau gurun pasir, udara di atasnya berlapis-lapis.
Tiap lapisan suhunya berbeda, makin dekat dengan aspal atau gurun pasir makin panas. Sinar yang berasal dari langit atau awan akan mengalami pembiasan berantai (sinarnya dibelokkan) oleh lapisan-lapisan itu, sampai akhirnya sinar ini berbalik ke atas (orang sering menyebutnya sebagai pemantulan total). Ketika sinar itu mengenai mata orang, maka orang akan melihatnya sebagai sesuatu yang kebiruan muncul dari aspal atau gurun pasir (seperti kolam air).
Agar lebih jelas silahkan perhatikan gambar-gambar ilustrasi berikut :



Fatamorgana adalah peristiwa mirage.
Mirage itu adalah suatu ilusi atau kekeliruan penglihatan.



Gambar diatas memperlihatkan pengaruh dari suhu udara
yang tidak seragam pada lintasan cahaya di udara




Gambar diatas menunjukkan tentang mirage
yang umum terpantau dan disebut inferior mirage
karena mirage-nya tampak dibawah benda yang sebenarnya



Terjadinya inferior mirage ataupun superior mirage
disebabkan oleh kecepatan perubahan suhu yang tinggi dari udara

Jadi, fatamorgana bukan karena mata kelelahan. Fenomena ini nyata dan dapat difoto. Yang jadi masalah adalah kesalahan interpretasi di otak kita.

keterangan sumber postingan dapat dilihat pada link ini

terimakasih :D

Percobaan Fisika Keren dari Bungkus Teh Celup




kawan, beberapa waktu lalu saya berkelana di dunia maya, (enggg... heehee). saya tidak sengaja menemukan posting mengenai percobaan fisika yang sangat menarik di sini, bahan utamanya menggunakan teh celup. Apa yang bisa kita lakukan dengan benda kecil itu? Sebelum kita bereksperimen, ada baiknya kita mengetahui sejarah dibalik pembuatan teh celup ini.


Teh celup tercipta secara tidak sengaja ketika seorang pedagang teh dan kopi bernama thomas sullivan (1904) memasukkan teh yang akan dijualnya ke dalam kemasan sutera. 


Awalnya pelanggan yang membeli harus membuka kemasan sutera tersebut untuk mengambil teh yang ada di dalamnya. hingga suatu ketika ada pelanggan yang memasukkan kemasan sutera berisi teh tersebut ke dalam air panas dan merasa cara itu lebih mudah untuk membuat teh.

Setelah itu teh kemasan sutera itu menjadi terkenal dan menjadi cara baru untuk menikmati teh.


Ok langsung aja kita ke eksperimen yang akan dipraktekkan. Untuk eksperimen kali ini bahan-bahan yang diperlukan adalah:
1. Teh celup (gunakan yang kemasannya dilipat dan ada staplesnya)

2. Korek api
3. Piring atau wadah


Langkah-langkah:

1. Buka satu kemasan teh celup (lepaskan staplesnya), keluarkan teh yang ada di dalam kemasan. Kemudian bentuk kemasan teh celup hingga menyerupai silinder (bisa diberdirikan di atas wadah)


 2. Nyalakan korek api, kemudian bakar bagian atas silinder kemasan teh celup.



3. Biarkan api bergerak ke bawah dan membakar silinder kemasan teh celup tersebut.


4. Ketika api mendekati bagian bawah, kemasan teh celup tersebut Api akan terbang dan melayang ke atas.



Bagaimana hal itu dapat terjadi?


Ketika api membakar bagian atas silinder teh celup, udara di sekitarnya memanas, mengembang dan bersifat kurang padat.


Karena udara panas di atas api kurang padat dari udara (dingin) di sekitarnya, maka kemasan teh celup tersebut akan terdorong dan terbang ke atas.



Ketika udara panas naik ke atas, udara yang lebih dingin bergerak dan menggantikan posisi udara panas sebelumnya. Gerakan perpindahan panas ini berlangsung berulang-ulang menyebabkan kemasan teh celup terbang lebih tinggi dan lebih tinggi dari sebelumnya.
Pada awalnya, silinder kemasan teh celup masih terlalu berat untuk dapat diangkat. Tetapi ketika dibakar, massanya akan berkurang, semakin ringan sampai akhirnya cukup ringan bagi arus udara untuk mendorongnya terbang ke udara. 

Ingat!!! Jangan percaya sebelum mencoba!!


ROKET MINI


Ya walaupun roket ini tidak sebagus roket air, tapi menarik untuk dibuat karena alat dan bahan yang diperlukan banyak kita temui di rumah dan warung terdekat.


Alat dan bahan :
* Alumunium foil
* Kotak korek api + batang korek api
* Penjepit kertas (paper clip)
* Jarum atau segala apapun yang lurus pokoknya.
* Gunting



Langkah percobaan :
* Gunting alumunium foil dengan lebar 8 cm x 3 cm.
* Potong bagian kepala dari batang korek api dan letakkan di atas alumunium foil. Lihat gambar!



* Gulung bagian ujung kiri alumunium foil sehingga membentuk tabung dengan bagian kepala korek api di tengahnya. Ingat membentuk tabung, jangan ditekan alumunium foilnya.
* Ambil dan luruskan paper clip. Kemudian ujung paper clip tersebut masukkan ke dalam lubang tabung alumunium foil tadi sehingga menyentuh kepala batang korek api. Ingat jangan menyentuh alumunium tapi kepala korek api ya.
* Nah sekarang baru tekan si alumunium sampai rapat.
* Gulung lagi alumunium foil 2-3 kali, kemudian sobek sisanya. Lihat gambar!


* Si ujung alumunium yang dekat paper clip diputar sampai erat, dan si ujung alumunium yang dekat korek api diputar kemudian digunting.
* Lepaskan paper clip terus masukkan jarum pada lubang bekas paper clip tadi.
* Selesai deh roket sederhananya, yang kita perlukan sekarang ialah landasannya.
* Landasannya bisa dari bungkus korek api atau sisa alumunium foil.
* Usahakan agar si roket membentuk sudut 45 derajat. Ayo kenapa? Lihat gambar!


Akhirnya ayo kita nyalakan roketnya!

* Maka terbanglah si roket mini ke angkasa. (Ga juga sih palingan cuma 8-10 meter dah turun lagi)

Konsep Fisika :
Korek api itu (kepalanya) merupakan bahan bakar yang baik untuk roket mini ini. Ketika roket mini ini dinyalakan, maka si kepala korek api ini akan terbakar dan menimbulkan panas dan gas. Karena gas tersebut dikelilingi oleh tembok alumunium foil, maka terjadi pengumpulan gas yang sangat tinggi di dalam roket. Dan akhirnya si roket terbang karena dorongan dari gas tersebut.

MEMBUAT API DARI ES

Ternyata api dapat dibuat dari es. Ga percaya?, mari kita buktikan segera. Ini percobaan lumayan asyik lho!

Alat dan bahan yang diperlukan:
1. Tempurung kelapa atau mangkuk
2. Kertas dan plastik
3. Air
4. Almari es
5. Rumput kering atau benda yang mudah terbakar
langkah-langkah pembuatan:
* buatlah lensa cembung dari bahan es, begini cara buatnya nih:
1. Tempurung/mangkok dialasi dengan kertas dan plastik (agar es mudah dipisahkan dari tempurung atau mangkok)
2. Isi tempurung/mangkok dengan air
3. Masukkan ke almari es dan tunggu sampai membeku.
4. Pisahkan es dari tempurung.

sumber: http://pindo-kurniawan.blogspot.com
pada siang hari (sekitar pukul 11.00 – 13.00) letakkan rumput kering di tanah lapang dan peganglah lensa cembung buatanmu tadi serta arahkan ke cahaya matahari sedemikian rupa sehingga cahaya terpusat pada rumput kering.